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Abstract

Hybridization and introgression can impact the evolution of natural populations. Several wild canid species hybridize in
nature, sometimes originating new taxa. However, hybridization with free-ranging dogs is threatening the genetic integrity
of grey wolf populations (Canis lupus), or even the survival of endangered species (e.g., the Ethiopian wolf C. simensis).
Efficient molecular tools to assess hybridization rates are essential in wolf conservation strategies. We evaluated the power
of biparental and uniparental markers (39 autosomal and 4 Y-linked microsatellites, a melanistic deletion at the b-defensin
CBD103 gene, the hypervariable domain of the mtDNA control-region) to identify the multilocus admixture patterns in wolf
x dog hybrids. We used empirical data from 2 hybrid groups with different histories: 30 presumptive natural hybrids from
Italy and 73 Czechoslovakian wolfdogs of known hybrid origin, as well as simulated data. We assessed the efficiency of
various marker combinations and reference samples in admixture analyses using 69 dogs of different breeds and 99 wolves
from Italy, Balkans and Carpathian Mountains. Results confirmed the occurrence of hybrids in Italy, some of them showing
anomalous phenotypic traits and exogenous mtDNA or Y-chromosome introgression. Hybridization was mostly attributable
to village dogs and not strictly patrilineal. The melanistic b-defensin deletion was found only in Italian dogs and in putative
hybrids. The 24 most divergent microsatellites (largest wolf-dog FST values) were equally or more informative than the entire
panel of 39 loci. A smaller panel of 12 microsatellites increased risks to identify false admixed individuals. The frequency of
F1 and F2 was lower than backcrosses or introgressed individuals, suggesting hybridization already occurred some
generations in the past, during early phases of wolf expansion from their historical core areas. Empirical and simulated data
indicated the identification of the past generation backcrosses is always uncertain, and a larger number of ancestry-
informative markers is needed.
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Introduction

The routine application of multilocus genetic and genomic

markers is providing deeper evidences on the evolutionary

consequences of genetic admixtures. Hybridization in nature is

no longer viewed as a sporadic, un-influential or merely negative

process contrasting cladogenesis [1]. Natural hybrid zones are hot-

spots of genetic diversity, where novel gene assemblages are

filtered by natural selection, exposing genetic variability to the

adaptive processes and eventually leading to hybrid speciation

[2,3]. Episodic hybridization events, although rare, may introduce

genetic variation into isolated populations, contrasting the possible

deleterious consequences of small effective size and inbreeding

[4,5]. In contrast, anthropogenic hybridization is usually viewed as

a risk factor in conservation biology [6,7]. Though genome

integrity is not necessarily disrupted by hybridization [8], the long-

term evolutionary consequences of introgression remain largely

unpredictable. Introgression of alien genes may swamp genetic

diversity [9], disrupt species-specific epistatic equilibria and local

adaptations [10], and drive local populations [11] or entire species

[12] to the verge of genetic extinction. However, recent findings

indicated that introgression of genes from domestic species may

also have unexpected beneficial consequences on the fitness of

wild-populations [13–15].

Wolf-like canids (genus Canis) evolved recently, during the last

2–4 million years [16], and retained the potential to hybridize in

nature, originating new taxa that could rapidly adapt to prey

community, landscape and climate changes [17–21]. In other

cases, hybridization has deleterious consequences. Free-ranging or

feral dogs (C. lupus familiaris) are widely distributed and can

hybridize with wild canids [22–24]. Hybridizing dogs are

threatening the survival of endangered species such as the

Ethiopian wolf (C. simensis) [25,26] and the genetic integrity of

several populations of grey wolves (C. lupus) [27–32]. Most of the
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wolf populations in central and western Europe dramatically

declined during the last few centuries. Legal protection and the

expansion of wild ungulates led to spectacular wolf re-expansion

waves [33], but their gene pools now risk to be polluted by

hybridization with overwhelming numbers of free-ranging dogs

[32]. The occurrence of wolf x dog hybridization has been

documented by morphological observations and molecular iden-

tifications in the Iberian and Italian peninsulas, Scandinavia,

Baltic countries and several areas of eastern Europe [27,29,34].

Consequently, conservation strategies require the assessment of

wolf x dog hybridization rates and the development of cost-

effective monitoring tools [35].

Unusual phenotypic traits may indicate hybridization, but their

genetic determinants are often unknown. Moreover, introgressed

variants may be undistinguishable from intraspecific variation

[28,36,37]. Deep and ancient introgression is, in principle, better

detected by molecular identifications [38]. Hybridization in wolves

has been mainly analyzed by limited numbers of unlinked and

presumably neutral autosomal markers (usually less than 30

microsatellites – STRs; [29,32]). Uniparental markers (the

hypervariable domain of the mtDNA control region - mtDNA

CR1; Y-linked STR haplotypes [28,39–42]) and recombination

analyses of linkage groups have also been used [43]. However, few

opportunistically selected markers have limited power to identify

hybrids when the genetic divergence among the parental

populations is lower than FST=0.10–0.15. In these conditions,

the identification of backcrosses behind the first 2 or 3 generations

is tricky also with c. 40 STR or 100 single nucleotide

polymorphism (SNP) markers [44]. Last-generation genomic tools

promise to solve the problem [3,15,45], but genomic assays are

expensive and still not widely used in conservation surveys of non-

model species [46]. Expanding the number of markers is

theoretically easy, but is offset by laboratory costs and increasing

risks of introducing PCR or scoring errors in multilocus genotypes

[47]. Therefore, selecting a minimum number of efficient markers

is still the most productive strategy in applied conservation genetics

[48,49].

We planned this study to evaluate the power of biparental and

uniparental molecular markers to identify presumptive wolf x dog

hybrids sampled in Italy, which were previously identified by

anomalous phenotypic traits or preliminary genetic analyses

[28,43,50]. We compared the results of admixture analyses

performed with 12, 24 and 39 autosomal STRs that were used

in wolf hybridization studies in Europe [28–30,42,51]. Most of the

published reports suggested a strict female wolf x male dog mating

asymmetry, but the presence of dog mtDNA haplotypes was

described in hybrid individuals in the Vancouver Island [52] and

Latvia [30]. We assessed the directionality of hybridization by

genotyping the mtDNA CR1, which contains diagnostic mutations

for the identification of the unique Italian wolf haplotype W14

[40] and Y-STR haplotypes, which have different frequencies in

wolves and dogs [39,41]. Moreover, we assessed the presence of a

functional melanistic deletion at the b-defensin CBD103 gene (the K-

locus), which determines black or darker-than-usual coat colours

and could have been introduced into wolf populations via

hybridization with dogs [13,28]. Free-ranging dogs have various

origins (village, hunting or shepherd dogs; random- or mixed-bred

dogs), but differ from wild-living feral dogs and are usually not

structured in stable populations. Thus, it is not easy to identify the

parental sources of hybrids. Moreover, the composition of the

reference parental samples may affect the results of admixture

analyses [53]. Therefore, we used a reference panel of samples

from different dog breeds and wolf populations that have chances

to admix with wolves in Italy.

Materials and Methods

Sampling
We genotyped 271 wolves, dogs and putative hybrids, collected

from 1996 to 2011 in Italy, Croatia, Czech and Slovak republics.

We collected wolf samples from 3 populations: 1) Italy (WIT;

n=63; collected from the entire wolf range in the Apennines [54]);

2) Czech and Slovak republics (WCZ; n=10; from the western

Carpathians) and 3) Croatia (WHR; n=26, from Dalmatia, Gorski

kotar and Lika regions). All wolves had the typical wolf coat colour

pattern and no apparent signal of morphological or genetic

hybridization [28]. We collected samples from 3 dog groups: 1)

village dogs in Italy (DIT; n=31), sampled from the north and

central Apennines and not selected based on their coat colours; 2)

an undescribed local dog breed, ‘‘Lupino del Gigante’’, bred in the

northern Apennines and phenotypically similar to shepherd dogs,

with variable grey, red, black, white and blue merle coats (named

‘‘Apennine dogs’’ in this study; DAP; n=26); and 3) certified

German Shepherd dogs bred in the Czech Republic (DCZ;

n=12). Samples of known or presumed hybrid origin were

collected from 2 groups: 1) Czechoslovakian wolfdogs (WDCZ;

n=73), a hybrid breed of German Shepherd dogs x Carpathian

wolf founders; 2) putative wild-living wolf x dog hybrids collected

in Italy (HYIT, n=30) and identified by their anomalous

phenotypic traits (dog-like body shape, coat colour variations,

presence of hind-leg spurs or white nails) or previous STR analyses

[28,43,50].

We obtained the tissue samples from found-dead wolves legally

collected by officers on behalf of the Italian Institute for

Environmental Protection and Research (ISPRA), the Czech

Agency of Nature Conservation and Landscape Protection, the

Biology Department, Faculty of Veterinary Medicine, Zagreb

University, Croatia. We obtained additional samples from legally

hunted wolves in Croatia, according to quotas defined by the

Croatian Commission for monitoring large carnivore populations

and approved by the Croatian Ministry for Environmental and

Nature Protection. No animal was sacrificed for the purposes of

this study. Blood and saliva samples from dogs and Czechoslova-

kian wolfdogs were collected by veterinaries that, according to Act

246/1992, sampled only animals in healthy conditions with

permission and assistance of the owners and with all the possible

efforts to minimise stress. We stored tissue and blood samples at

220uC in 10 volumes of 95% ethanol, or in 2 volumes of a Tris/

SDS buffer, respectively. Saliva samples were dry-stored. We

extracted DNA using a QIAGEN DNeasy tissue extraction kit

(Qiagen Inc, Hilden, Germany) in a robotic liquid handling system

MULTIPROBE IIEX (Perkin-Elmer). In this study, we reanalyzed

all the samples.

Selection of Molecular Markers
We selected a panel of 39 canine autosomal STRs that were

used in some of the most recent studies on wolf population genetics

and hybridization in Europe [28,29,39,42,43,50,51,55–60], which

includes: 1) 12 STRs used in a 10-year long non-invasive wolf

monitoring project in Italy [61]; 2) 12 STRs used in a

hybridization study by Godinho et al. [29]; and 3) 15 STRs from

the Finnzymes Canine multiplex kit (Finnzymes, Thermo Scien-

tific Canine GenotypesTM); one of them, the Amelogenin marker,

was used to sex the individuals (the other 4 of the 19 STRs

included in this kit were not used because they showed confusing

electropherograms). These 39 STRs were amplified in 4 PCR

multiplexes using the Qiagen Multiplex PCR Kit (Qiagen,

GmbH-Hilden, Germany). Paternal haplotypes were identified

using 4 Y-STRs (MS34A, MS34B, MSY41A and MS41B; [41])

Molecular Identification of Wolf x Dog Hybrids
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that were amplified in a multiplex reaction. The hypervariable

part of the mtDNA CR1 (350 bp) was amplified and sequenced

following Randi et al. [40]. A dominant 3-bp deletion (named KB

or CBD103DG23) at the b-defensin CBD103 gene (the K-locus [36])

was genotyped following Caniglia et al. [28]. Amplifications were

carried out in 10–20 ml reactions, using 1–2 ml DNA solution

(containing c. 20–40 ng of DNA). Negative (no DNA in PCR) and

positive (samples with known genotypes) controls were used to

detect laboratory contaminations. All samples were independently

replicated twice to assess the occurrence of allelic dropout and false

alleles. Details on the selected markers, primers and PCR profiles

are reported in Text S1 and in Table S1.

The amplicons were analysed in an ABI DNA sequencer

3130XL (Applied Biosystems; Foster City, CA), using the software

GENEMAPPER 4.0 for STRs and SEQSCAPE 2.5 for sequences. The

mtDNA sequences were aligned using CLUSTAL W [62] in BIOEDIT

[63]. Identical haplotypes were collapsed using DNASP 5 [64] and

blasted in GenBank. Allele binning and check for null STR alleles

were performed in MICROCHECKER [65] with an adjusted P value

corresponding to a=0.05 after Bonferroni correction [66]. The

power of the STRs to identify each unique genotype was evaluated

calculating the probability-of-identity values (PID and PIDsibs;

[67]) in GENALEX 6.41 [68].

Estimates of Genetic Variability and Population Structure
The multilocus genotypes determined at 39 STRs in the

complete data set (n=271; 8 sampled groups: DIT, DAP, DCZ,

WIT, WHR, WCZ, WDCZ and HYIT) were analyzed in

GENALEX to estimate: 1) allele frequency by locus and population,

observed (HO) and unbiased expected (UHE) heterozygosity, mean

number of alleles per locus (Na) and the number of private alleles

per population (Np); 2) AMOVA (analysis of molecular variance

[69]) and Weir and Cockerham’s average and pair-wise FST values

[70]; 3) the frequency distributions of mtDNA CR1 and Y-STR

haplotypes, and melanistic KB deletion. GENETIX 4.05 [71] was

used to compute the fixation index FIS and to test for departures

from Hardy-Weinberg and linkage equilibrium (HWLE) for each

locus and population. A subset of the 24 most discriminating STRs

was identified based on FST distances between wolves and dogs,

and confirmed in WHICHLOCI analyses [72], performed using the

‘‘allele frequency differential’’ and the ‘‘whichrun assignment’’

methods [73,74]. A third marker subset included the 12 STRs

used in the monitoring project of the Italian wolf population

[75,76].

Clustering and assignment testing were performed by: 1) a

discriminant analysis of principal components computed by the

ADEGENET package (DAPC [77] in R; www.r-project.org), which

maximizes the among-group divergence while minimizes the

within-group variance, thus improving the discrimination of

populations poorly differentiated as compared to standard

principal component methods; 2) the Rannala and Mountain’s

[78] assignment method in GENECLASS 2.0 [79]; 3) the Bayesian

clustering model (assuming HWLE in the genetic clusters)

implemented in STRUCTURE 2.3 [80]; 4) a non-Bayesian clustering

procedure (that does not assume HWLE in the clusters)

implemented in FLOCK 2.0 [81]. First, we used STRUCTURE to

infer the optimal partition of the 8 sampled groups, assuming K

from 1 to 12, with 2 independent runs for each K with 400 000

MCMC and discarding the first 40 000 burn-ins, using the

‘‘admixture’’ and independent allele frequency ‘‘I’’ models, and no

prior information (option ‘‘usepopinfo’’ not activated). The DK

statistics was used to identify the highest rate of increase in the

posterior probability LnP(D) of the data between each consecutive

K [82]. Based on the first STRUCTURE results, admixture analyses

were performed again assuming 4 reference groups (DIT, DAP,

DCZ and WIT) for the assignment of the putative Italian wolf x

dog hybrids (HYIT), using 39, 24 and 12 STRs. STRUCTURE was

run with K from 1 to 8, with 400 000 MCMC and 40 000 burn-

ins, with the option ‘‘usepopinfo’’ activated or not. In the former

case, we assumed that reference wolves and dogs were a priori

correctly identified and assigned to their own clusters (popflag=1),

while the putative hybrids were left to be assigned (popflag=0). The

estimated allele frequencies of the wolf and dog reference clusters

were not affected by the allele frequencies of the other samples

(option updatepfrompopflagonly activated).

The software FLOCK implements a non-Bayesian clustering

algorithm based on reiterated allocations that promises efficient

partitioning of the admixed samples in groups of homogeneous

genotypes, also if putative parental populations are not sampled,

independent of any genetic model (i.e., HWLE is not assumed).

FLOCK was used to partition samples DIT, DAP, DCZ, WIT and

HYIT, with reference groups varying from 1 to 8, initial random

choice of samples, 50 runs and 20 re-allocations per run (LOD

threshold for allocation to reference groups = 0). Admixture

inference may be difficult when model assumptions are not met

and if small numbers of markers are used (but also if the number of

loci is large; [83]). For instance, when an unknown number of K

parental populations must be inferred simultaneously to the

admixture coefficients, both overfitting (too large K values) and

false admixtures may results, particularly if the sampled popula-

tions diverged moderately (FST ,0.10; [84]). Hence, false positives

(error type I), namely individuals with false admixed ancestry,

might arose by chance. In this study, we explored the risk of false

admixtures using BAPS [84], which produces null distributions for

the admixture expected by chance that are used to identify

significant admixtures at a given p-value [85].

The power of the 39, 24 and 12 STRs to correctly detect a priori

known parentals, hybrids and backcrosses was determined by

simulations using HYBRIDLAB [86]. We randomly selected 60

reference wolves and 60 reference dogs among WIT and DIT to

generate 60 simulated genotypes in each of the following classes:

first (F1) and second (F2) generation hybrids, first (BC1W, BC1D),

second (BC2W, BC2D) and third (BC3W, BC3D) generation

backcrosses with wolves and dogs, respectively. The simulated

genotypes were then analyzed in STRUCTURE with the ‘‘admixture’’

and the ‘‘I’’ models, without prior population information. The

proportion of individuals correctly assigned to each class led to

define the appropriate threshold value to use in the admixture

analyses.

The software NEWHYBRIDS 1.1 [87] was used to compute the

posterior probability that each genotype belongs to each of the

following 6 classes: wolf (W) and dog (D) parentals, F1 and F2,

backcrosses of F1 with dogs (BC1D) and with wolves (BC1W).

Posterior distributions were evaluated after 105 iterations of the

Monte Carlo Markov chains, following a burn-in period of 104

iterations, without using any individual or allele frequency prior

information, with ‘‘Jeffreys-like’’ or ‘‘Uniform’’ priors for mixing

both proportions and allele frequencies.

Results

Genetic Variability and Wolf-dog Divergence
The 39 STRs were polymorphic, except CPH5 and PEZ5

(monomorphic in DCZ), showing from 5 (at locus FH2096) to 23

(at locus FH2137) alleles per locus. The number of alleles and

private alleles was higher in dogs than in wolves (Table 1).

Heterozygosity varied from Ho=0.46 - UHe= 0.48 in WIT to

Ho= 0.69 - UHe= 0.71 in DIT. DIT, WIT, HYIT and WHR

Molecular Identification of Wolf x Dog Hybrids
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were not in HWE, showing significantly positive FIS values. We

found no null and false alleles, and no occurrence of allelic

dropout. Values of PID and PIDsibs were very low, and all

genotypes were unique (Table 1). The proportions of significant

pairwise correlations among loci were low (from 0.7% in DCZ to

3.0% in WCZ), indicating no departures from LE. We found a

total of 17 Y-STR haplotypes (Table 2). WHR and DIT were the

most variable groups. HYIT showed 2 haplotypes (YH17 and

YH26) shared with WIT, plus haplotype YH5, shared with dogs

and WDCZ, and the private haplotype YH32. There were 19

mtDNA CR1 haplotypes in total (Table 3). DIT had the highest

number of haplotypes (8). All WIT had the diagnostic W14

haplotype, that was found in 26/30 (87%) of HYIT. HYIT

showed also haplotypes D15 (1), shared with both DIT and DAP,

and W16 (3) that was previously identified in Bulgarian wolves

[40]. We detected the KB melanistic deletion only in samples from

Italy, with similar KB/K+ heterozygote frequencies in DIT (0.20),

DAP (0.31) and HYIT (0.23).

Genetic diversity at autosomal and uniparental markers was

significantly (P,0.001) partitioned among the 8 groups, with

FST(phiPT)=0.25 (39 STRs), 0.52 (Y-STRs) and 0.49 (mtDNA

CR1). Pairwise FST varied deeply among groups (min FST=0.01

between WIT and HYIT; max FST=0.42 between WIT and

DCZ), and among loci (min FST=0.09 at locus FH2001; max

FST=0.45 at locus U253). The 24 wolf-dog most divergent STRs,

identified by both single-locus FST and WHICHLOCI selections,

were: C20.253, CPH9, CPH4, RE247M23, CPH12, AHTh260,

INU030, AHT103, CPH2, CPH14, AHTk253, C27.442, CPH5,

FH2010, AHTk211, AHT132, C13.758, C09.173, AHT111,

AHTh171, REN169D01, INU055, FH2848 and AHT137.

Wolf-dog average FST computed using 24 STRs (0.31) was higher

than with 39 STRs (0.25) or 12 STRs (0.25). A DAPC plot

obtained using 39 STRs showed that all groups were sharply

distinct except the partially overlapping Italian wolves and hybrids

(Fig. 1). Multivariate distances among groups decreased progres-

sively using 39, 24 or 12 STRs, but wolves and dogs were more

distant with the most divergent 24 STRs. Two individuals, the

most probable F1 and F2 in STRUCTURE and NEWHYBRIDS analyses

(see Table 4), were roughly intermediate between Italian wolves

and dogs (Fig. 1B).

Population Clustering and Admixture Analyses
The probability of the data reached a plateau at DK=4–6, with

minimum LnP(D) values at K=6 in STRUCTURE analyses

performed with 39 STRs and 8 groups (Fig. 2A). At K=4 wolves

and dogs were split into 4 clusters: dogs, WDCZ, WIT, WCZ plus

WHR. At K=5 and K=6 the 3 wolf groups (WIT, WCZ and

WHR) were assigned to 3 distinct clusters (Fig. 2B). WIT were not

admixed while 14/30 (47%) of the putative hybrids showed signals

of Italian wolf x dog admixture with qi values ranging from 0.509

to 0.953. The main contributions to admixture derived from WIT,

DIT and DAP (Table S2). There was no apparent contribution

from the 2 non-Italian wolf populations, with the exception of one

sample that also showed the private Y-haplotype YH32. FLOCK

results with K=7 and 8 were concordant: the 3 wolf groups,

DWCZ and HYIT were correctly assigned to different groups

while the 3 dog groups were not separated.

We compared the efficiency of the 39, 24 and 12 STRs to assign

HYIT to their most likely parental groups (DIT, DAP, DCZ and

WIT). DK stabilized at K=3–4 in STRUCTURE analyses (Fig. 3). All

WIT were assigned to their own cluster with qi .0.993, with the

exception of one sample. In contrast, 13 (43%) to 15 (50%) of the

30 HYIT genotypes showed detectable signals of admixture with qi
values ranging from 0.405 to 0.988. The other 15 samples did not

show signals of admixture at their STR genotypes. The main

contributions to admixture derived from the Italian wolves (cluster

4 in Table S3). STRUCTURE run with popflag=1 for wolves and dogs

showed the same results (Table S3), while FLOCK did not split WIT

from HYIT and did not detect admixtures (not shown).

The 5 genotypic classes simulated in HYBRIDLAB were correctly

identified by STRUCTURE (K=2; Fig. 4) with 39, 24 or 12 STRs. All

simulated F1, F2 and BC1 were correctly assigned while c. 20% of

the BC2 were confused with parental dogs or wolves. Decreasing

the number of loci yielded decreasing values of the average

Table 1. Genetic variability estimated at 39 autosomal microsatellite loci (STR) and at the KB melanistic deletion on the b-defensin

CBD103 gene in the wolf, dog and putative hybrid sampled groups used in this study.

Group* na Na/Npb Hoc UHed FIS
e %LEf PIDf PIDsibg K+/K+h KB/K+h KB/KBh

DIT 31 7.1/35 0.69 0.71 0.07* 2.4 2.0E-39 9.1E-16 21 (0.70) 8 (0.20) 2 (0.07)

DAP 26 5.0/4 0.63 0.64 0.03 2.0 2.5E-31 1.8E-13 17 (0.65) 8 (0.31) 1 (0.04)

DCZ 12 3.3/0 0.50 0.48 20.03 0.7 5.4E-20 1.8E-09 12 (1.00) 0 0

WIT 63 4.0/4 0.46 0.48 0.06* 1.3 1.1E-21 3.8E-10 63 (1.00) 0 0

WCZ 10 4.1/6 0.58 0.66 0.13* 3.0 7.8E-29 6.2E-13 10 (1.00) 0 0

WHR 26 5.6/18 0.68 0.70 0.03 1.3 4.2E-35 1.0E-14 26 (1.00) 0 0

WDCZ 73 4.7/12 0.54 0.54 0.00 1.6 8.2E-24 4.7E-11 73 (1.00) 0 0

HYIT 30 5.3/5 0.53 0.57 0.08* 1.9 2.6E-26 8.5E-12 23 (0.77) 7 (0.23) 0

*DIT = Village dogs from Italy; DAP =Apennine dogs; DCZ =German Shepherd dogs from Czech and Slovakian republics; WIT =Wolves from Italy; WCZ=Wolves from
Carpathian Mountains; WHR=Wolves from Croatia; WDCZ=Czechoslovakian wolfdogs; HYIT =putative wolf x dog hybrids from Italy.
an= sample size.
bNa= average number of alleles per STR locus; Np = total number of private STR alleles in each sampled group.
cHo= average observed heterozygosity over 39 autosomal STRs.
dUHe= average expected heterozygosity (unbiased) over 39 autosomal STRs.
eFIS=deviation from Hardy-Weinberg equilibrium (* P,0.01).
f%LE=proportion of significant correlations (P= 0.05, Bonferroni corrected) among 39639 pairwise STR comparisons.
gPID and PIDsib =Hardy-Weinberg probability-of-identity among unrelated and full sib individuals in the sampled groups, computed using 39 autosomal STRs.
hnumber and frequency (in parenthesis) of genotypes at the b-defensin CBD103 gene: K+/K+=homozygotes wild-type (no deletion); KB/K+=heterozygotes for the KB

melanistic deletion; = KB/KB=homozygotes for the KB melanistic deletion.
doi:10.1371/journal.pone.0086409.t001
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proportion of membership in dogs (Qi=0.973, 0.968 and 0.958)

and wolves (Qi=0.985, 0.980 and 0.960 with 39, 24 and 12 STRs

respectively) due to increasing background noise in both wolves

and dogs (Fig. 4). Consequently, the 90% confidence interval (CI)

values broadened, thus increasing the uncertainty of the assign-

ments, particularly when STRUCTURE was run with 12 STRs

(Fig. 5). The risk of false positives (false admixed individuals) was

inversely proportional to the number of STRs as indicated by

BAPS results: admixture analyses based on 100 simulations for

spurious admixture coefficients yielded 9 (30%), 8 (23%) and only

5 (17%) significantly admixed individuals (P=0.05) with 39, 24

and 12 STRs, respectively.

Hybridization and Multilocus Introgression
STRUCTURE results with popinfo=0 and 39 STRs showed that, at

the threshold qi=0.985, all the Italian wolves were assigned to the

same cluster with one exception. Sixteen (53%) of the 30 HYIT

were identified as admixed (Table 4). STRUCTURE results with 24

and 12 STRs (and popinfo=0) yielded 15 (50%) and 10 (33%)

admixed HYIT at thresholds qi=0.980 and 0.960, respectively. At

the same thresholds, STRUCTURE results obtained with popinfo=1

yielded 20 (67%), 23 (77%) and 21 (70%) admixed genotypes with

39, 24 and 12 STRs respectively. STRUCTURE assignments were

consistent for the 16 admixed genotypes showing the lowest qi
values. These genotypes were also identified by GENECLASS, with

the exception of sample n. 9. FLOCK identified as admixed 13 of

these genotypes with 39 STRs, which were, however, assigned to

the WIT cluster if analysed with 24 or 12 STRs. Only 9 of these

genotypes were identified as admixed by BAPS (Table 4). NEW-

HYBRIDS with 39 STRs showed that: 1) all dogs had posterior

probability P.0.999 to be ‘‘parentals’’, except 4 samples; 2) all

Italian wolves had posterior probability P=1.000 to be ‘‘par-

entals’’, with one exception (see STRUCTURE results above); 3)

among HYIT there was one F1 (n. 1), 2 F2 (n. 2 and n. 3), and 9

backcrosses (Table 4). The other 18 samples (60%) were assigned

to the parental wolf population.

Twelve of the 16 admixed genotypes also showed one or more

anomalous phenotypic traits, the KB deletion, variant mtDNA or

Y-STR haplotypes (Table 4). These 16 genotypes were finally

identified as F1 (n. 1), F2 (n. 2 and 3) or backcrosses (BC; n. 4 to

n. 16). Eight genotypes (n. 17 to 24) did not show any admixture

signal at their STR genotypes but showed phenotypic anomalies,

the KB allele or the mtDNA haplotype W16 and were finally

identified as introgressed (Table 4). The remaining 6 samples

(n. 25 to 30) were identified as presumptive hybrids only in

STRUCTURE analyses with 12 STRs.

Discussion

All genotyped wolf, dog and hybrid samples were variable at

autosomal and uniparental markers. Italian wolves showed the

lowest genetic diversity, probably as a consequence of long-lasting

genetic isolation south of the Alps and a recent bottleneck [89],

clustering separately from the other studied populations. Wolf

populations in eastern Europe, though experienced less dramatic

bottlenecks or had persistent gene flow with neighbouring

populations [16], exhibited partial signals of isolation in Mediter-

ranean, Balkan and perhaps Carpathian glacial refuges during

Pleistocene [90]. Post-glacial recolonization determined a complex

population mosaic, which has been further shaped by restrictions

to gene flow due to local prey specialization, or by random drift

due to recent anthropogenic fragmentation [91]. Consequently,

wolf genetic diversity in Europe is geographically partitioned and

Table 2. Distribution of the Y-linked microsatellite haplotypes in the wolf, dog and putative hybrid sampled groups.

Y haplotype DIT DAP DCZ WIT WCZ WHR WDCZ HYIT S-2001a I-2010b

YH01 19 J H4

YH05 6 14 6 10 2 L H3

YH06 6

YH08 3 C –

YH09 1 – –

YH11 2 3 G –

YH16 1 1 K –

YH17 27 13 – H1

YH20 6 – –

YH24 1 – –

YH26 4 2 Q H2

YH27 1 – –

YH28 1 – –

YH31 2 1 – –

YH32 1 – –

YH33 1 I –

YH34 3 1 –

Total males 18 15 6 31 5 16 29 18

Total haplotypes 6 2 1 2 3 7 2 4

Private haplotypes 4 0 0 0 0 4 1 1

aS-2001 =haplotype identifications as named in Sundqvist et al. [41].
bI-2010 = haplotype identifications as named in Iacolina et al. [39].
doi:10.1371/journal.pone.0086409.t002
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populations are genetically identifiable [16]. Genetic divergence

among wolf populations and between wolves and dogs provides

the basis for a wealth of molecular markers that can be used in

assignment and admixture analyses [88].

Admixed wolf genotypes may originate in consequence of

intentional or accidental escapes of non-indigenous wolves from

captivity, or by crossbreeding with dogs. In this study we did not

detect consistent signals of admixture between Italian and other

Table 3. Distribution of the mtDNA CR1 haplotypes in the wolf, dog and putative hybrid sampled groups.

CR* DIT DAP DCZ WIT WCZ WHR WDCZ HYIT

D01a 6 3

D05a 1 2

D06a 1

D08a 3

D09a 3 5

D10a 2

D13a 2 47

D14a 13 3 3

D15a 2 13 1

D16a 1

D17a 1

D18a 4 22

H6b 2

H14b 6

W1c 13

W2c 1

W6c 12

W14a 63 26

W16a 3

Total samples 31 26 11 63 8 26 69 30

Total haplotypes 8 5 5 1 2 3 2 3

Private haplotypes 3 0 2 0 2 3 0 1

*mtDNA CR1 haplotypes identifications as named in Randi et al. [40]a, Pilot et al. [90]b and Gomerčić et al. [98]c.
doi:10.1371/journal.pone.0086409.t003

Figure 1. Discriminant analysis of principal components (DAPC) of wolf, dog and wolf x dog hybrids genotyped with 39 (A), 24 (B)
and 12 (C) autosomal microsatellites. Sampling groups: 1) village dogs sampled in Italy (DIT; n= 31); 2) ‘‘Lupino del Gigante’’ dogs from Italy
(DAP; n= 26); 3) German Shepherd dogs from Czech Republic (DCZ; n=12;); 4) wolves in Italy (WIT; n=63); 5) wolves in Czech and Slovak republics
(WCZ; n= 10); 6)wolves in Croatia (WHR; n=26); 7) certified Czechoslovakian wolfdogs (WDCZ; n= 73); and 8) putative wolf x dog hybrids (HYIT;
n= 30) collected in Italy and identified by their anomalous phenotypic traits (dog-like body shape, coat colour variations, presence of hind-leg spurs
or white nails), or by previous microsatellite analyses. Black numbers indicate the most probable F1 (sample n. 1) and F2 (sample n. 3) individuals as
determined by STRUCTURE and NEWHYBRIDS analyses. The first principal component PC I (abscissa) explains 51.48%, 49.96% and 63.65% of the total
genetic variance shown by genotypes determined at 39, 24 and 12 microsatellites, respectively. The corresponding second principal component PC II
(ordinate) explains 21.25%, 21.93% and 18.19% of the total genetic variance. The inserts (low right corners) indicate the proportion of genetic
variability explained by the first 6 eigenvalues.
doi:10.1371/journal.pone.0086409.g001
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wolves. All the presumed hybrids clustered very close to - or

partially overlapped with - the Italian wolves and showed no

obvious connection to any other group. An exception was the

strongly admixed sample n. 11, which was partially assigned to the

WIT, WHR and WDCZ clusters. This sample was collected in the

northern Apennines during 2011, showed the Italian wolf W14

mtDNA haplotype and a private YH32 Y-haplotype that was not

found in any other wolf or dog group analyzed in this study

(Table 4). Ancestry of this sample with dogs, non-Italian wolves or

WDCZ cannot be excluded, although the haplotype YH32 was

not found in the WDCZ samples. Most of the HYIT showed the

Italian wolf haplotypes YH17 and YH26, but 2 individuals had the

haplotype YH05, shared with DIT and DAP and that was also

detected in WDCZ. The position of WDCZ in the DAPC plots

indicates a higher proportion of dog genome. This is in agreement

with the origin of the breed that was established in the 50ies by

Table 4. Identifications of the 30 putative wolf x dog hybrid samples used in this study.

STRUCTURE popinfo=0g STRUCTURE popinfo=1h GENECLASS
i FLOCK

j BAPS
k NHl

IDa Yb Phc CRd Y-STRe Kf 39 24 12 39 24 12 39 24 12 39 39 39 IDm

1 1997 Dog-like D15 YH17 + 0.439 0.472 0.405 0.448 0.468 0.382 99.9 100 98.4 HY HY F1 F1

2 1999 Spur W14 YH17 + 0.690 0.700 0.914 0.684 0.706 0.866 100 100 98.7 HY HY F2-BC F2

3 2007 unknown W14 female B 0.625 0.459 0.602 0.629 0.470 0.600 100 100 100 HY HY F2 F2

4 1999 Spur; dark coat W14 YH17 B 0.886 0.934 0.960 0.860 0.890 0.862 99.9 99.8 52.7 HY W BC BC

5 2001 White nails W14 female + 0.760 0.833 0.957 0.759 0.811 0.853 100 100 99.1 HY HY BC BC

6 2006 White nails W14 female + 0.833 0.900 0.959 0.818 0.842 0.884 100 100 95.1 HY HY BC BC

7 2011 Brown coat W14 YH17 + 0.855 0.809 0.839 0.846 0.798 0.794 100 100 99.9 HY HY BC BC

8 2007 Spur W14 female + 0.795 0.774 0.989 0.772 0.754 0.971 100 100 17.9 HY HY BC BC

9 2007 Dark coat W16 YH26 + 0.995 0.987 0.989 0.984 0.963 0.968 2.5 71.1 94.3 HY W W BC

10 2006 wild-type W14 YH17 + 0.972 0.946 0.979 0.919 0.886 0.920 99.9 99.9 99.8 HY W W BC

11 2011 wild-type W14 YH32 + 0.661 0.592 0.686 0.646 0.591 0.629 100 100 100 HY HY BC BC

12 2012 wild-type W14 female + 0.882 0.971 0.993 0.871 0.930 0.982 100 97.0 23.1 HY W BC BC

13 2012 unknown W14 YH05 + 0.837 0.740 0.958 0.826 0.791 0.929 100 100 66.6 HY HY BC BC

14 2009 unknown W14 YH05 + 0.988 0.979 0.977 0.971 0.956 0.956 95.9 44.9 87.4 W W W BC

15 2011 wild-type W14 YH17 + 0.940 0.977 0.992 0.906 0.941 0.980 99.9 99.6 7.0 W W W-BC BC

16 2006 unknown W14 female + 0.977 0.977 0.958 0.951 0.947 0.901 97.9 68.4 99.5 W W W BC

17 2002 Black coat W14 YH17 B 0.997 0.996 0.988 0.993 0.989 0.963 6.3 2.4 75.3 W W W IG

18 2009 Black coat W14 female B 0.998 0.997 0.993 0.995 0.992 0.980 0.0 0.0 9.2 W W W IG

19 2009 Dog-like; dark W14 YH17 B 0.996 0.995 0.993 0.989 0.982 0.982 1.3 43.1 36.3 W W W IG

20 2000 Black coat W14 female B 0.997 0.996 0.991 0.993 0.988 0.978 6.5 10.0 46.9 W W W IG

21 2012 White nails W14 YH17 + 0.998 0.997 0.994 0.994 0.991 0.985 0.0 8.2 4.3 W W W IG

22 2011 unknown W16 female + 0.998 0.997 0.993 0.994 0.991 0.978 0.0 0.0 54.5 W W W IG

23 2010 unknown W16 YH26 + 0.995 0.993 0.986 0.979 0.964 0.935 98.6 99.0 99.0 W W W IG

24 2006 unknown W14 YH17 B 0.995 0.997 0.989 0.986 0.992 0.964 13.4 0.0 30.2 W W W IG

25 2007 wild-type W14 YH17 + 0.997 0.997 0.990 0.989 0.986 0.962 0.0 6.4 12.5 W W W FP

26 2006 wild-type W14 female + 0.995 0.994 0.978 0.980 0.969 0.905 9.6 47.5 99.4 W W W FP

27 2007 wild-type W14 YH17 + 0.996 0.995 0.990 0.988 0.980 0.958 8.8 25.2 84.4 W W W FP

28 1997 wild-type W14 female + 0.997 0.996 0.981 0.980 0.966 0.867 2.6 63.4 95.6 W W W FP

29 2010 wild-type W14 YH17 + 0.997 0.996 0.992 0.988 0.979 0.962 11.4 46.1 97.3 W W W FP

30 2006 wild-type W14 YH17 + 0.996 0.993 0.979 0.984 0.979 0.944 4.1 27.2 77.9 W W W FP

aID = sample identification number.
bY= year of sampling.
cOh=phenotype traits.
dCR=mtDNA control region haplotypes.
eY-STR = Y-linked STR haplotypes detected in males.
fK=melanistic deletion at the b-defensin CBD103 gene:+=homozygote wild-type (no deletion), B = heterozygote for the KB melanistic deletion.
gand h STRUCTURE= individual proportion of assignment in STRUCTURE admixture analyses to the Italian wolf cluster with 39, 24 and 12 microsatellites, with option
usepopinfo not activated (popinfo= 0) or activated (popinfo= 1).
iGENECLASS=probability of assignment to a distinct cluster (admixed genotypes) with 39, 24 and 12 microsatellites performed in GENECLASS.
jFLOCK= assignment obtained through the non-Bayesian clustering procedure implemented in FLOCK to an Italian wolf (W) or hybrid (HY) cluster.
kBAPS= assignment to an Italian wolf (W) or an admixed (HY) cluster with 39 microsatellites as inferred using BAPS.
lNH= assignment to parental Italian wolf (W), F1, F2 or first generation backcross (BC) genotypic classes obtained with NEWHYBRIDS.
mID = final identification of each sample as a likely F1, F2, backcross (BC), introgressed (IG) or false admixed (FP) genotype, based on a qualitative consensus of all the
probabilistic admixture analyses.
doi:10.1371/journal.pone.0086409.t004
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crossing 4 Carpathian wolf founders with German Shepherd dogs.

Backcrossing with German Shepherds continued together with

artificial selection. The standard of the current breed was

approved by the Fédération Cynologique Internationale in 1989.

The genotypes of WDCZ in the DAPC were not intermediate

relative to their parental populations (DCZ and WCZ), probably

in consequence of strong founder effect, persistent low effective

population size and genetic drift. Moreover, captive wolfdogs

Figure 2. STRUCTURE analyses performed to infer the optimal partition of 8 sampled groups (A): DIT=village dogs in Italy;
DAP=Apennine dogs; DCZ=German Shepherd; WIT=wolves in Italy; WCZ=wolves in Czech and Slovak republics; WHR=wolves in
Croatia; WDCZ=Czechoslovakian wolfdogs; HYIT=putative wolf x dog hybrids collected in Italy; (genotyped at 39 autosomal
microsatellites). The posterior probability Ln(K) of the data and the statistics DK were used to identify the optimal K=4 (averages of 2 independent
runs). Plots of individual assignment probability to each inferred cluster are shown (B) for optimal K= 4, 5 and 6. STRUCTURE was run assuming K from 1
to 12, with 400 000 MCMC and discarding the first 40 000 burn-ins, using the ‘‘admixture’’ and independent allele frequency ‘‘I’’ models, and no prior
information (option ‘‘usepopinfo’’ not activated).
doi:10.1371/journal.pone.0086409.g002

Figure 3. STRUCTURE analyses performed on the putative Italian wolf x dog hybrids (HYIT), assuming 4 reference groups (DIT, DAP,
DCZ and WIT), at 39 (A), 24 (B) and 12 (C) microsatellites. STRUCTURE was run with K from 1 to 8 (left side: values of DK; Evanno et al. [82]), with
400 000 MCMC and 40 000 burn-ins, with option ‘‘usepopinfo’’ not activated.
doi:10.1371/journal.pone.0086409.g003
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experienced artificial selection designed to keep dog behaviour

while preserving wolf-like phenotypic traits including coat colour,

sensory abilities and endurance, with possible hitchhiking effects

on linked neutral loci. Unofficial recurrent and more recent

crossbreeding of wolf-like dogs with wolves by individual breeders

may continue to generate hybrids with variable phenotypes and

behaviours [92]. Hybrids may be aggressive, difficult to control

and have chances to survive in nature crossbreeding with wolves.

Genetic analyses of larger sample sizes are needed to identify local

hybridization events, but, with the exception of the uncertain

origin of sample n. 11 and haplotype YH05, the available

evidence led to exclude that the WDCZ are a widespread source

of hybridization with wolves in Italy, pointing out a main

contribution of village and other dogs.

The KB melanistic deletion was detected only in DIT, DAP and

HYIT. A different melanistic mutation at theMC1R gene is known

to determine black coats specifically in German Shepherd dogs

[75,76] and explains also why WDCZ do not have the KB deletion.

Wolf samples collected in Croatia and in the Carpathians were all

wild-type grey and the KB deletion was not expected. We do not

know the origin of the KB haplotype in the Italian wolves, if via

hybridization with black dogs or by a spontaneous mutation at the

b-defensin CBD103 gene. The KB deletion was already present in

ancient canids in Europe over 10 000 years ago, probably entered

in North American wolf populations through ancient hybridiza-

tion with dogs, and was also found in a melanistic pack of hybrid

origin in Italy [28,36,93]. However these findings are still

controversial and can not be generalized. Results of admixture

analyses reported in our study are not unequivocal: 2 black-coated

individuals showed strong signals of admixture at their multilocus

STR genotypes and the concomitant presence of the melanistic KB

deletion, while other 5 black-coated individuals did not show any

signal of admixture. These animals, which could originate from

past hybridization no longer detectable at their 39 STR genotypes,

deserve additional investigations. The origin of the KB deletion in

dog or wolf ancestors could be ascertained by sequencing the

flanking haplotypes in Italian wolves and village dogs. Signals of

past hybridizations may become detectable using genomic data

and haplotype block reconstructions [3,15,16]. Melanistic pheno-

types in wolves and dogs can be determined also by epistatic

interactions among other and still undescribed mutations [94]. It is

noteworthy that one Italian dark-coated backcross did not show

the KB deletion (sample n. 9 in Table 4), suggesting that mutations

at other structural or regulatory genes may add complexities to the

expression of melanistic coat colour variations in wolves. A lack of

samples or the absence of hybridization may explain why

melanistic wolves were not found in other European countries

(but see [29]).

We found that 50% of our putative hybrids showed unequivocal

signals of Italian wolf x dog admixture at STRs. Seven of them also

showed morphological anomalies, and 4 had the KB deletion or

mtDNA CR1 and Y-STR haplotypes not found in the Italian

wolves. Nine genotypes yielded weaker STR admixture signals,

but showed dark coats, white nails, the KB deletion or variant

mtDNA CR1 and Y-STR haplotypes. Hence, 24 (80%) of the

putative hybrids showed combinations of variant phenotypic and

Figure 4. STRUCTURE analyses of empirical (DIT, WIT and HYIT) and HYBRIDLAB-simulated genotypes identified using 39 microsatellites.
F1 and F2 between wolf and dogs; BC1= first, and BC2= second backcross with dogs (D) or wolves (W); BC3D and BC3W=F2 backcrossed with dogs
or wolves, respectively. STRUCTURE was run with K= 2; admixture and I models, popflag= 0. Details of the individual proportion of admixture in the
Italian wolves (WIT) and putative hybrid (HYIT), genotyped with 39 (top), 24 (mid) or 12 (bottom) microsatellites are showed.
doi:10.1371/journal.pone.0086409.g004
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genetic traits suggesting admixed origins. The remaining 6 samples

were identified as presumptive hybrids only by STRUCTURE

analyses with 12 STRs, which however might produce false

positives. The putative hybrids were not randomly collected and

the admixed individuals are not representative of the frequency of

hybridization in the Italian wolf population. The frequency of

hybridization should be estimated by extensive sampling through

the entire wolf distribution range. A well planned country-wide

program of wounded or found-dead wolf sampling would provide

additional, but likely biased information, because the probability

to encounter dead or wounded wolves is expected to vary in the

heterogeneous landscapes used by wolves [95]. Moreover,

carcasses of introgressed individuals can be confused with dogs

and not collected [29]. Instead, exhaustive sampling collection

throughout the wolf distribution range can be obtained by long-

term non-invasive genetic monitoring programs [28].

Hybridization in wolves seems to be prevalently asymmetric,

originating by female wolves mating with male dogs. The vast

majority of admixed wolf genotypes described so far showed wolf

mtDNA haplotypes [29,31,32], with a few exceptions [30,52]).

Mating of male wolves x female dogs, however, could occur

because young males disperse frequently and are expected to

explore and colonize new areas more rapidly than females [54,96].

In this study, sample n. 1, an F1 identified by all the admixture

analyses and confirmed by the allelic composition of all its STR

loci, showed dog-like body shape and the mtDNA haplotype D15

that is shared only with Italian village and Apennine dogs,

indicating a female dog parental. Moreover, we identified 3

backcrosses that shared the same mtDNA haplotype W16 so far

detected only in Bulgarian wolves [40]. These samples were

collected from carcasses found in 3 geographically distant areas of

the northern Apennines during different years (2007, 2010 and

2011). Theoretically, they might originate from the same or a few

related packs. However, their average Queller and Goodnight’s

relatedness r=0.076 was significantly lower (P,0.001, t-test) than

average r estimated with the same panel of 12 STRs in 26 Italian

wolf packs with known pedigrees (r = 0.39060.106 [28]), suggest-

ing independent crossbreeding events. Thus, hybridization of

wolves in Italy was not strictly patrilineal. Two other backcrosses

had the Y-haplotype YH05, which was found in dogs sampled in

Italy and in WDCZ. These samples were collected in 2 distant

areas (central and southern Apennines) in 2009 and 2012.

Probably they were not closely related (average r=2 0.128) and

have originated from 2 independent hybridization events.

Simulations showed that c. 48 STRs with FST .0.10–0.15 are

needed to significantly improve the reliability of backcross

identifications [44]. VonHoldt et al. [38] demonstrated that even

100 highly diagnostic SNPs cannot efficiently discriminate second

generation wolf x dog backcrosses. Thus, estimating the minimum

number of markers to identify backcrosses is still an open issue.

The outcomes of our admixture analyses computed using 39, 24

and 12 STRs were not as straightforward as expected. The

estimate of admixed individuals did not increase using more loci,

and a naı̈ve assumption that larger panels of markers should lead

to identify more admixed individuals was not fulfilled. The 24

most discriminating STRs were equally or more efficient than the

full set of 39 STRs. Individual assignments were consistent for the

16 genotypes with the lowest qi values in the Italian wolf cluster,

which were also identified by GENECLASS, independently on the

assumptions embedded in the algorithms implemented in the

different software. The assignments of the other genotypes were

less consistent, and variable outcomes were obtained using 12

STRs. Some genotypes had disproportionally high qi values

(particularly running STRUCTURE with popflag=0; e.g., n. 5 and 12)

and could represent false negatives. Other samples showed

disproportionally low qi values (e.g., n. 25, 26, 27, 28, 29 and

30) and could be false positives. These results highlight 2 related

issues that were often neglected in other studies:

1) HYBRIDLAB simulations showed how the power to correctly

identify known (simulated) hybrids and backcrosses changes

with the number of markers: the larger is the number of

STRs, the higher is the threshold. Decreasing the number of

markers decreases the average proportion of membership in

reference clusters due to increasing background noise.

Consequently, the width of CI values and the individual

assignment uncertainty will increase. The risk of false admixed

individuals is inversely proportional to the number of STRs,

as indicated by BAPS simulations. The use of more markers

allows to apply higher qi thresholds, reducing uncertainty and

the risk of false positives. Therefore, each study should plan

adequate power analyses to identify the appropriate thresh-

olds, whereas the adoption of threshold used in other studies

might not guarantee optimal assignments.

2) The number of markers used in admixture analyses is not

important per se, but the discriminating power of markers

deeply affects the results of the assignments. The power of

markers can be approximated by single-locus FST values

between reference sample groups or assessed by other

computational approaches [48,72]. Selecting the most dis-

criminating STRs will reduce the costs (both manpower and

chemicals) of genetic assays, the rate of genotyping errors

intrinsically associated to each additional marker, and the risk

of false positives. The 24 most discriminating STRs selected in

our study only partially overlapped the most discriminating

STRs identified by Godinho et al. [29], indicating that the

selection of loci should be performed based on local

Figure 5. Average proportion of membership (qi, upper
boxplots) of wolves from Italy (WIT) to the wolf cluster and
lower boundary of their 90% credibility intervals (CI; lower
boxplots), computed on genotypes at 39, 24 or 12 microsat-
ellites.
doi:10.1371/journal.pone.0086409.g005
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populations’ data sets. A similar approach was suggested by

Hindrikson et al. [30], for mtDNA and Y haplotype

identification.

Although genomic platforms promise extensive screening of

thousands of SNPs, practical and financial constraints still limit

their applications in conservation genetics. Genetic monitoring of

carnivores is still based on the genotyping of limited numbers of

STRs, often in DNAs extracted from non-invasively collected

samples. In other cases, tissue samples are collected from found-

dead animals, which often produce degraded DNA. Genotyping

large numbers of STRs will probably continue to be problematic

in practical conservation genetics, due to risks of false alleles and

allelic dropout in molecular identifications of low-content DNA.

For the same reasons, genotyping large numbers of SNPs is still

unpractical in non-invasive genetics. Selecting the minimum

number of informative autosomal STRs, plus informative mtDNA

and Y-linked markers will remain the most viable strategy in the

near future.

Conclusions

The frequency of backcrosses or introgressed individuals

(87.5%) between wolf and dog is far higher than the frequency

of F1 and F2 hybrids (12.5%), suggesting that hybridization events

already occurred in Italy some generations in the past. Probably

this happened during the early phases of population re-expansion

in Italy, when wolves moved from their historical core areas in the

central-southern Apennines and colonized the northern Apennine

mountains and lower hills [61]. Theoretical expectations [97] and

empirical findings [29,43] indicate that the risk of hybridization is

higher in the periphery of wolf distributions in human-dominated

landscapes, where wolf populations are less dense, free-ranging

dogs are more abundant and early dispersing wolves have more

probabilities to meet and mate with dogs. Expanding wolf

populations will inevitably spread further into anthropogenically

altered areas, where settlement density, infrastructure and the

presence of agricultural activities will likely increase traffic

casualties, illegal wolf killings. Consequently high pack turnover

can contribute to further raise hybridization frequency. These

findings suggest that: 1) expanding wolf populations may

experience higher hybridization risks than stable populations; 2)

the dynamics of hybridization and introgression will change

through time, with a maximum expectancy of hybridization

during the early phases of the colonization waves, followed by the

subsequent spread of hybrids and the generation of backcrosses

within wild populations. The spatial and temporal dynamics of

hybridization and backcrossing should be conditioned by land-

scape features, anthropogenic factors, wolf and feral dog initial

population density and colonization rates. These variables could

be modelled using landscape genetic tools to reconstruct maps of

hybridization risks, thus providing important resources for the

monitoring and management of wolf populations in Europe.
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